Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38271724

RESUMO

Objective.ThephenoPET system is a plant dedicated positron emission tomography (PET) scanner consisting of fully digital photo multipliers with lutetium-yttrium oxyorthosilicate crystals and located inside a custom climate chamber. Here, we present the setup ofphenoPET, its data processing and image reconstruction together with its performance.Approach.The performance characterization follows the national electrical manufacturers association (NEMA) standard for small animal PET systems with a number of adoptions due to the vertical oriented bore of a PET for plant sciences. In addition temperature stability and spatial resolution with a hot rod phantom are addressed.Main results.The spatial resolution for a22Na point source at a radial distance of 5 mm to the center of the field-of-view (FOV) is 1.45 mm, 0.82 mm and 1.88 mm with filtered back projection in radial, tangential and axial direction, respectively. A hot rod phantom with18F gives a spatial resolution of up to 1.6 mm. The peak noise-equivalent count rates are 550 kcps @ 35.08 MBq, 308 kcps @ 33 MBq and 45 kcps @ 40.60 MBq for the mouse, rat and monkey size scatter phantoms, respectively. The scatter fractions for these phantoms are 12.63%, 22.64% and 55.90%. We observe a peak sensitivity of up to 3.6% and a total sensitivity of up toSA,tot= 2.17%. For the NEMA image quality phantom we observe a uniformity of %STD= 4.22% with ordinary Poisson maximum likelihood expectation-maximization with 52 iterations. Here, recovery coefficients of 0.12, 0.64, 0.89, 0.93 and 0.91 for 1 mm, 2 mm, 3 mm, 4 mm and 5 mm rods are obtained and spill-over ratios of 0.08 and 0.14 for the water-filled and air-filled inserts, respectively.Significance.ThephenoPET and its laboratory are now in routine operation for the administration of [11C]CO2and non-invasive measurement of transport and allocation of11C-labelled photoassimilates in plants.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons , Camundongos , Ratos , Animais , Tomografia por Emissão de Pósitrons/métodos , Imagens de Fantasmas
2.
Magn Reson (Gott) ; 2(1): 265-280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37904775

RESUMO

In operando nuclear magnetic resonance (NMR) spectroscopy is one method for the online investigation of electrochemical systems and reactions. It allows for real-time observations of the formation of products and intermediates, and it grants insights into the interactions of substrates and catalysts. An in operando NMR setup for the investigation of the electrolytic reduction of CO2 at silver electrodes has been developed. The electrolysis cell consists of a three-electrode setup using a working electrode of pristine silver, a chlorinated silver wire as the reference electrode, and a graphite counter electrode. The setup can be adjusted for the use of different electrode materials and fits inside a 5 mm NMR tube. Additionally, a shielding setup was employed to minimize noise caused by interference of external radio frequency (RF) waves with the conductive components of the setup. The electrochemical performance of the in operando electrolysis setup is compared with a standard CO2 electrolysis cell. The small cell geometry impedes the release of gaseous products, and thus it is primarily suited for current densities below 1 mA cm-2. The effect of conductive components on 13C NMR experiments was studied using a CO2-saturated solution of aqueous bicarbonate electrolyte. Despite the B0 field distortions caused by the electrodes, a proper shimming could be attained, and line widths of ca. 1 Hz were achieved. This enables investigations in the sub-Hertz range by NMR spectroscopy. High-resolution 13C NMR and relaxation time measurements proved to be sensitive to changes in the sample. It was found that the dynamics of the bicarbonate electrolyte varies not only due to interactions with the silver electrode, which leads to the formation of an electrical double layer and catalyzes the exchange reaction between CO2 and HCO3-, but also due to interactions with the electrochemical setup. This highlights the necessity of a step-by-step experiment design for a mechanistic understanding of processes occurring during electrochemical CO2 reduction.

3.
Plant J ; 59(4): 634-44, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19392708

RESUMO

Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires non-invasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope (11)C. Storage organs of sugar beet (Beta vulgaris) and radish plants (Raphanus sativus) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants (Zea mays), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI-PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance.


Assuntos
Imageamento por Ressonância Magnética/métodos , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Beta vulgaris , Radioisótopos de Carbono , Raízes de Plantas/anatomia & histologia , Brotos de Planta/anatomia & histologia , Raphanus , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...